Board Description

The LimeSDR X3 development board provides a hardware platform for developing and prototyping high-performance and logic-intensive digital and RF designs using and Xilinx FPGA and Lime Microsystems transceiver. For more information on the following topics, refer to the respective documents:

LimeSDR X3 board features:

  • RF transceivers

    • 3x Lime Microsystems LMS7002M

  • Baseband ADCs

    • 4x ADS424, Dual-Channel, 14-bit, 160Msps, Analog-To-Digital converter

  • Baseband DACs

    • 2x MAX5878, Dual-Channel, 16-bit, 250Msps, Digital-To-analog converter

  • FPGA Features

    • Xilinx Artix-7 XC7A200T in 676-FCBGA (27x27) package

    • 215,360 logic elements

    • 740 DSP slices

    • 13 Mb block RAM

    • x4 Gen 2 PCIe interface

    • 10 clock management tile (CMT), each containing one MMCM and one PLL

  • FPGA Configuration

    • JTAG mode configuration

  • Memory Devices

    • 256 Mbit FPGA configuration FLASH

    • 4x 128Kbit (16K x 8) EEPROM (for each RF transceiver and FPGA data)

  • Other Devices

    • Temperature sensor

    • Crypto Authentication Device

    • GNSS receiver

  • Connections

    • Coaxial RF (SMA and uFL/MMCX) connectors

    • uFL/MMCX connectors and headers for reference clock IN/OUT, GNSS antenna

    • 12V 6 pin PICe power connector

    • 12V header for powering external devices

    • Fan headers

    • FPGA JTAG connector (2mm pitch)

  • Clock System

    • 30.72MHz (default) VCOCXO and 38.4MHz (optional) VCTCXO

    • Possibility to use GNSS PPS signal as a reference when tuning VCOCXO frequency

    • Possibility to tune VCOCXO by Phase detector’s charge pump (to match a reference clock input) or by onboard DAC.

    • Possibility to synchronize multiple boards using CLK_IN and CLK_OUT headers or coaxial connectors.

    • Clock generator/PLL for baseband DACs, ADCs

    • Hardware for White Rabbit Precision Time Protocol (PTP) implementation

  • User I/O

    • 2x PMOD headers (0.1” pitch) connected to FPGA

    • 4x dual color (RG) LEDs connected to FPGA

    • 4x Switches connected to FPGA

  • Board Size without connectors 232,5mm x 106,7mm (9.15” x 4.2”)

LimeSDR X3 board overview

The heart of the LimeSDR X3 board is Xilinx Artix-7 XC7A200T. Its main function is to transfer digital data between the PC and the board via the PCIe interface. The block diagram for LimeSDR X3 v1.0 board is as shown in Figure 1.

../_images/PCIe_5GRadio_3v0_diagrams_r1_BD.png

Figure 1. LimeSDR X3 v1.0 Board Block Diagram

LimeSDR X3 v1.0 board view with highlighted major components and connectors is presented in Figure 2 and Figure 3. Lime Microsystems LMS7002M RF transceivers, Xilinx Artix-7 FPGA and other main components are placed on the top side of the board. There are three connector types – data and debugging (PCIe x4, PMOD and JTAG), coaxial (clock input/output, GNSS antenna, RF transmit and receive ports), miscellaneous (fan headers).

../_images/PCIe_5GRadio_v3.0_top_components.png

Figure 2. LimeSDR X3 v1.0 top side components and connectors

../_images/PCIe_5GRadio_v3.0_bot_components.png

Figure 3. LimeSDR X3 v1.0 bottom side components and connectors

Board components description is listed in Table 1 and Table 2.

Table 1. Board components

Featured Devices

Board Reference

Type

Description

IC1, IC4, IC21

RF transceiver

Lime Microsystems LMS7002M

IC51

FPGA

Xilinx Artix-7 XC7A200T in 676-FCBGA (27x27) package

IC62, IC64, IC66, IC68

Baseband ADC

14-bit, 160 MSPS, ADS4246

IC60, IC61

Baseband DAC

16-bt, 250 MSPS, MAX5878

IC58

GNSS module

GNSS receiver LYNQ N20B

Miscellaneous devices onboard

Board Reference

Type

Description

IC54

IC

Temperature sensor LM75

IC56, IC57

IC

I2C secure key storage ATECC508A

IC63, IC65, IC67, IC69

ADC driver

ADC driver ADA4930-2

Configuration, Status and Setup Elements

Board Reference

Type

Description

J14

JTAG chain pin header

FPGA programming pin header for Xilinx platform cable.

LED1,

LED2,

LED3,

LED4

Red-green status LEDs

User defined FPGA indication.

LED5

Green status LED

VCC3P3 power rail indication

LED6

Red-green status LED

FPGA init indication.

General User Input/Output

Board Reference

Type

Description

J15, J19

Pin header

2x PMOD connectors (8 FPGA GPIOs + 4 power pins, 0.1” pitch)

SW1

Switch

4-bit FPGA switch

Memory Devices

Board Reference

Type

Description

IC2, IC19, IC22

EEPROM

128K (16K x 8) EEPROM connected to each LMS7002M

IC55

EEPROM

128K (16K x 8) EEPROM connected to FPGA

IC52/IC53

Flash memory

FPGA configuration Flash (128 or 256 Mbit)

Table 2. Board components

Clock Circuitry

Board Reference

Type

Description

XO3

VCOCXO

30.72 MHz voltage-controlled, oven controlled crystal oscillator

used as a reference clock (connected by default).

XO4-XO7

VCTCXO

Various VCTCXOs (30.72 MHz, 38.40 MHz, 40.00MHz) voltage-controlled, temperature

compensated crystal oscillators used as a reference clock (not connected by default).

IC79

Clock generator

Texas Instruments CDCM6208

IC74, IC78

Clock buffer

Texas Instruments LMK00101

IC76

Phase detector

Analog devices ADF4002, used to synchronize reference clock to external clock

IC77

DAC

16 bit DAC for XO VC tuning

J29

U.FL/MMCX

Reference clock input for phase detector (default)

J27

U.FL/MMCX

Clock input (LMK1_CLK1_IN) (not connected by default)

J28

U.FL/MMCX

Clock output (LMK1_CLKOUT)

J30

6 pin header

External synchronization input

J31

6 pin header

External synchronization output

Precision Time Protocol (White Rabbit) hardware

Board Reference

Type

Description

IC70, IC73

DAC

16 bit DAC for XOs VC tuning

XO1

VCTCXO

25 MHz VCTCXO

XO2

VCXO

20 MHz VCXO

IC71

Clock generator

Texas Instruments CDCM61004

J24

SFP cage

SFP cage

J25

SMA

PTP clock output PTP_CLK2_OUT (from FPGA)

J26

U.FL/MMCX

PTP clock output PTP_CLK3_OUT (from FPGA)

RF connectors

Board Reference

Type

Description

J1

U.FL/MMCX

LMS1 RX1 port

J2

U.FL/MMCX

LMS1 RX2 port

J3

U.FL/MMCX

LMS3 TX2_2 port

J4

U.FL/MMCX

LMS3 RX1_W port

J5

U.FL/MMCX

LMS3 RX2_W port

J6

U.FL/MMCX

LMS3 RX1_H port

J7

U.FL/MMCX

LMS3 RX2_H port

J8

SMA

LMS1_TX1 port

J9

SMA

LMS1_TX2 port

J10

U.FL/MMCX

LMS2 TRX1 port

J11

U.FL/MMCX

LMS2 RX1 port

J12

U.FL/MMCX

LMS2 TRX2 port

J13

U.FL/MMCX

LMS2 RX2 port

J21

SMA

GNSS module active antenna connector

J22

SMA

External SMA to internal U.FL/MMCX

J23

U.FL/MMCX

Power Supply

Board Reference

Type

Description

J34

Pin header

12V header for powering external devices (0.2” pitch)

J35

Pin header

12V header for powering external devices (0.1” pitch)

J36

6 pin PCIe power

12V PCIe power connector for powering board

Other

Board Reference

Type

Description

J16, J17, J18

Header

Fan connection headers. Selectable voltage 3.3V, 5V or 12V (5V default).

LimeSDR X3 board architecture

More detailed description of LimeSDR X3 board components and interconnections is given in the sections of this chapter.

RF path

LimeSDR X3 board has three LMS7002 transceivers and various other RF components like matching networks, RF switches, power amplifiers, attenuators etc. The complete RF structure is as shown in Figure 4.

../_images/PCIe_5GRadio_3v0_diagrams_r1_RF.png

Figure 4. LimeSDR X3 v1.0 RF block diagram

RF transceiver #1 RF path is the simplest. Each TX and RX channel has two frequency-matched channels that can be selected using a 2:1 RF switches. In addition, each TX path has an RF amplifier after band selection. This gives RF transceiver #1 a MIMO system (2x2) with selectable bands in full duplex configuration.

RF transceiver #2 is designed to work in 3.55GHz bands. Each TX and RX channel have fixed frequency matching dedicated for 5G 3.55GHz band. TX paths have PAs with couplers on their outputs. Coupled ports can be fed to RF transceiver #3 RXn_H inputs and can be used for applications like calibrations, DPD etc. Each RX path got LNA. This allows RF transceiver #2 to be configured as a MIMO system (2x2) with selectable bands in full or half duplex configurations.

RF transceiver #3 is dedicated for calibrations. Calibration signals may be fed to RF transceiver #2 RX channels or can receive coupled TX signal from PAs. The RF transceiver #3 also has several TX and RX channels that are routed to the coaxial connectors.

More information about RF transceivers is provided in the next section.

RF transceivers

The LMS7002M is a fully-integrated, multi-band, multi-standard RF transceiver that is highly programmable. It combines Low Noise Amplifiers (RXLNA), TX Power Amplifier Drivers (TXPAD) receiver/transmitter (RX/TX) mixers, RX/TX filters, synthesizers, RX gain control, TX power control, analogue-to-digital and digital-to-analogue converters (ADC/DACs) and has been designed to require very few external components.

There are three LMS7002M field programmable RF transceiver ICs (LMS7002M#1 - IC1, LMS7002M#2 – IC4 and LMS7002M#3 – IC21), interface signals can be acknowledged by corresponding prefixes LMSx_*, where x can be 1, 2 or 3. For example LMS1_* signals belongs to IC1 and LMS2_* belongs to IC4.

In the following manner interface and control signals are described below:

  • Digital Interface Signals: LMS7002M (IC1) is using data bus LMS1_DIQ1_D[11:0] and LMS1_DIQ2_D[11:0], LMS1_ENABLE_IQSEL1 and LMS1_ENABLE_IQSEL2, LMS1_FCLK1 and LMS1_FCLK2, LMS1_MCLK1 and LMS1_MCLK2 signals to transfer data to/from FPGA. Indexes 1 and 2 indicate transceiver digital data PORT-1 or PORT-2. Any of these ports can be used to transmit or receive data. By default, PORT-1 is selected as receive port and PORT-2 is selected as transmit port. The FCLK# is input clock and MCLK# is output clock for LMS7002M transceiver. TXNRX signals sets ports directions. For LMS7002M interface timing details refer to LMS7002M transceiver datasheet page 12-13 [link]

  • LMS Control Signals: these signals are used for optional functionality:

    • LMSx_RXEN, LMSx_TXEN – receiver and transmitter enable/disable signals.

    • LMS_RESET – LMS7002M reset signal.

  • SPI Interface: LMS7002M transceiver is configured via 4-wire SPI interface; FPGA_SPI0_SCLK, FPGA_SPI0_MOSI, FPGA_SPI0_LMSx_MISO, FPGA_SPI0_LMSx_SS. The SPI interface is controlled from FPGA.

  • LMS I2C Interface: LMS EEPROM are connected to this interface.

Interconnections between LMS7002#1 and LMS7002#2 RF transceivers and FPGA, pin names, schematic signal names and FPGA IO standards are listed in Table 3 and Table 4.

Table 3. transceiver (LMS7002M#1 IC1) digital interface pins

Chip pin (IC1)

Chip reference (IC1)

Schematic signal name

FPGA pin

FPGA I/O standard

Comments

E5

xoscin_tx

LMS1_TxPLL_CLK

Connected to clock buffer

AM24

xoscin_rx

LMS1_RxPLL_CLK

Connected to clock buffer

E27

RESET

LMS1_RESET

V1

2.5V/3.3V

U29

TXEN

LMS1_TXEN

V6

2.5V/3.3V

V34

RXEN

LMS1_RXEN

AE3

2.5V/3.3V

U33

CORE_LDO_EN

LMS1_CORE_LDO_EN

2.5V/3.3V

AB34

MCLK1

LMS1_MCLK1

AA3

2.5V/3.3V

AA33

FCLK1

LMS1_FCLK1

AB2

2.5V/3.3V

V32

TXNRX1

LMS1_TXNRX1

AF4

2.5V/3.3V

Y32

ENABLE_IQSEL1

LMS1_EN_IQSEL1

AD4

2.5V/3.3V

AG31

DIQ1_D0

LMS1_DIQ1_D0

V4

2.5V/3.3V

AF30

DIQ1_D1

LMS1_DIQ1_D1

W5

2.5V/3.3V

AF34

DIQ1_D2

LMS1_DIQ1_D2

AC6

2.5V/3.3V

AE31

DIQ1_D3

LMS1_DIQ1_D3

AB6

2.5V/3.3V

AD30

DIQ1_D4

LMS1_DIQ1_D4

W4

2.5V/3.3V

AC29

DIQ1_D5

LMS1_DIQ1_D5

AA7

2.5V/3.3V

AE33

DIQ1_D6

LMS1_DIQ1_D6

AA5

2.5V/3.3V

AD32

DIQ1_D7

LMS1_DIQ1_D7

AB5

2.5V/3.3V

AC31

DIQ1_D8

LMS1_DIQ1_D8

AE5

2.5V/3.3V

AC33

DIQ1_D9

LMS1_DIQ1_D9

AD5

2.5V/3.3V

AB30

DIQ1_D10

LMS1_DIQ1_D10

AC4

2.5V/3.3V

AB32

DIQ1_D11

LMS1_DIQ1_D11

AF5

2.5V/3.3V

P34

MCLK2

LMS1_MCLK2

AA4

2.5V/3.3V

R29

FCLK2

LMS1_FCLK2

AC3

2.5V/3.3V

U31

TXNRX2

LMS1_TXNRX2

AF3

2.5V/3.3V

R33

ENABLE_IQSEL2

LMS1_EN_IQSEL2

AE2

2.5V/3.3V

H30

DIQ2_D0

LMS1_DIQ2_D0

V2

2.5V/3.3V

J31

DIQ2_D1

LMS1_DIQ2_D1

V3

2.5V/3.3V

K30

DIQ2_D2

LMS1_DIQ2_D2

W1

2.5V/3.3V

K32

DIQ2_D3

LMS1_DIQ2_D3

Y1

2.5V/3.3V

L31

DIQ2_D4

LMS1_DIQ2_D4

AF2

2.5V/3.3V

K34

DIQ2_D5

LMS1_DIQ2_D5

Y3

2.5V/3.3V

M30

DIQ2_D6

LMS1_DIQ2_D6

AB1

2.5V/3.3V

M32

DIQ2_D7

LMS1_DIQ2_D7

Y2

2.5V/3.3V

N31

DIQ2_D8

LMS1_DIQ2_D8

AC1

2.5V/3.3V

N33

DIQ2_D9

LMS1_DIQ2_D9

W3

2.5V/3.3V

P30

DIQ2_D10

LMS1_DIQ2_D10

AE1

2.5V/3.3V

P32

DIQ2_D11

LMS1_DIQ2_D11

AD1

2.5V/3.3V

D28

SEN

FPGA_SPI0_LMS1_SS

W8

2.5V/3.3V

SPI interface

C29

SCLK

FPGA_SPI0_SCLK

Y6

2.5V/3.3V

SPI interface

F30

SDIO

FPGA_SPI0_MOSI

Y5

2.5V/3.3V

SPI interface

F28

SDO

FPGA_SPI0_LMS1_MISO

V8

2.5V/3.3V

SPI interface

D26

SDA

LMS1_I2C_SDA

2.5V/3.3V

Connected to EEPROM

C27

SCL

LMS1_I2C_SCL

2.5V/3.3V

Connected to EEPROM

Table 4. RF transceiver (LMS7002M#2 IC4) digital interface pins

Chip pin (IC3)

Chip reference (IC2)

Schematic signal name

FPGA pin

FPGA I/O standard

Comments

E5

xoscin_tx

LMS2_TxPLL_CLK

Connected to clock buffer

AM24

xoscin_rx

LMS2_RxPLL_CLK

Connected to clock buffer

E27

RESET

LMS2_RESET

V7

2.5V/3.3V

U29

TXEN

LMS2_TXEN

AA8

2.5V/3.3V

V34

RXEN

LMS2_RXEN

Y8

2.5V/3.3V

U33

CORE_LDO_EN

LMS2_CORE_LDO_EN

2.5V/3.3V

D28

SEN

FPGA_SPI0_LMS2_SS

AA2

2.5V/3.3V

SPI interface

C29

SCLK

FPGA_SPI0_SCLK

Y6

2.5V/3.3V

SPI interface

F30

SDIO

FPGA_SPI0_MOSI

Y5

2.5V/3.3V

SPI interface

F28

SDO

FPGA_SPI0_LMS2_MISO

AB4

2.5V/3.3V

SPI interface

D26

SDA

LMS2_I2C_SDA

2.5V/3.3V

Connected to EEPROM

C27

SCL

LMS2_I2C_SCL

2.5V/3.3V

Connected to EEPROM

Table 5. RF transceiver (LMS7002M#3 IC21) digital interface pins

Chip pin (IC3)

Chip reference (IC2)

Schematic signal name

FPGA pin

FPGA I/O standard

Comments

E5

xoscin_tx

LMS3_TxPLL_CLK

Connected to clock buffer

AM24

xoscin_rx

LMS3_RxPLL_CLK

Connected to clock buffer

E27

RESET

LMS3_RESET

W6

2.5V/3.3V

U29

TXEN

LMS3_TXEN

Y7

2.5V/3.3V

V34

RXEN

LMS3_RXEN

U7

2.5V/3.3V

U33

CORE_LDO_EN

LMS3_CORE_LDO_EN

2.5V/3.3V

D28

SEN

FPGA_SPI0_LMS3_SS

AC2

2.5V/3.3V

SPI interface

C29

SCLK

FPGA_SPI0_SCLK

Y6

2.5V/3.3V

SPI interface

F30

SDIO

FPGA_SPI0_MOSI

Y5

2.5V/3.3V

SPI interface

F28

SDO

FPGA_SPI0_LMS3_MISO

AD3

2.5V/3.3V

SPI interface

D26

SDA

LMS3_I2C_SDA

2.5V/3.3V

Connected to EEPROM

C27

SCL

LMS3_I2C_SCL

2.5V/3.3V

Connected to EEPROM

Baseband ADCs

There are four Dual-Channel 14-Bit, 160 Msps, analog-to-digital converters (ADS4246 – IC62, IC64, IC66 and IC68). ADC analog inputs are connected to baseband RX outputs of RF transceivers #1 and #2 (IC4 and IC21). Digital output pins are connected to FPGA.

Detailed interface between ADCs and other components including ADC pins, schematic signal names, FPGA pins and FPGA I/O standards is as shown in Table 6, Table 7, Table 8 and Table 9.

Table 6. 14-bit LMS2 RX1 BB ADC (IC62) digital interface

Chip pin (IC33)

Chip reference (IC33)

Schematic signal name

FPGA pin

I/O standard

41

DA0_P/DA1

LMS2_BB_ADC1_DA0_P

B20

2.5V

40

DA0_M/DA0

LMS2_BB_ADC1_DA0_N

A20

2.5V

43

DA2_P/DA3

LMS2_BB_ADC1_DA1_P

A17

2.5V

42

DA2_M/DA2

LMS2_BB_ADC1_DA1_N

A18

2.5V

45

DA4_P/DA5

LMS2_BB_ADC1_DA2_P

G17

2.5V

44

DA4_M/DA4

LMS2_BB_ADC1_DA2_N

F17

2.5V

47

DA6_P/DA7

LMS2_BB_ADC1_DA3_P

B19

2.5V

46

DA6_M/DA6

LMS2_BB_ADC1_DA3_N

A19

2.5V

51

DA8_P/DA13

LMS2_BB_ADC1_DA4_P

C17

2.5V

50

DA8_M/DA12

LMS2_BB_ADC1_DA4_N

B17

2.5V

53

DA10_P/DA9

LMS2_BB_ADC1_DA5_P

E16

2.5V

52

DA10_M/DA8

LMS2_BB_ADC1_DA5_N

D16

2.5V

55

DA12_P/DA11

LMS2_BB_ADC1_DA6_P

B22

2.5V

54

DA12_M/DA10

LMS2_BB_ADC1_DA6_N

A22

2.5V

61

DB0_P/DB1

LMS2_BB_ADC1_DB0_P

A23

2.5V

60

DB0_M/DB0

LMS2_BB_ADC1_DB0_N

A24

2.5V

63

DB2_P/DB3

LMS2_BB_ADC1_DB1_P

C26

2.5V

62

DB2_M/DB2

LMS2_BB_ADC1_DB1_N

B26

2.5V

3

DB4_P/DB5

LMS2_BB_ADC1_DB2_P

F18

2.5V

2

DB4_M/DB4

LMS2_BB_ADC1_DB2_N

F19

2.5V

5

DB6_P/DB7

LMS2_BB_ADC1_DB3_P

C21

2.5V

4

DB6_M/DB6

LMS2_BB_ADC1_DB3_N

B21

2.5V

7

DB8_P/DB13

LMS2_BB_ADC1_DB4_P

E21

2.5V

6

DB8_M/DB12

LMS2_BB_ADC1_DB4_N

D21

2.5V

9

DB10_P/DB9

LMS2_BB_ADC1_DB5_P

C24

2.5V

8

DB10_M/DB8

LMS2_BB_ADC1_DB5_N

B24

2.5V

11

DB12_P/DB11

LMS2_BB_ADC1_DB6_P

B25

2.5V

10

DB12_M/DB10

LMS2_BB_ADC1_DB6_N

A25

2.5V

35

CTRL1

LMS2_BB_ADC1_CTRL1

36

CTRL2

LMS2_BB_ADC1_CTRL2

34

CTRL3

LMS2_BB_ADC1_CTRL3

29

INP_A

LMS2_BB_ADC1_INA_P

30

INM_A

LMS2_BB_ADC1_INA_N

23

VCM

LMS2_BB_ADC1_VCM

57

CLKOUTP/CLKOUT

LMS2_BB_ADC1_CLKOUT_P

D18

2.5V

56

CLKOUTM/UNUSED

LMS2_BB_ADC1_CLKOUT_N

C18

2.5V

19

INP_B

LMS2_BB_ADC1_INB_P

20

INM_B

LMS2_BB_ADC1_INB_N

25

CLKP

LMS2_BB_ADC1_CLKC_P

26

CLKM

LMS2_BB_ADC1_CLKC_N

13

SCLK

FPGA_SPI1_SCLK

M16

2.5V

14

SDATA

FPGA_SPI1_MOSI

M14

2.5V

64

SDOUT

FPGA_SPI1_MISO_BB_ADC_LS

E22

2.5V

15

SEN

FPGA_SPI1_LMS2_BB_ADC1_SS

C22

2.5V

12

RESET

FPGA_LMS2_BB_ADC1_RESET

D23

2.5V

Table 7. 14-bit LMS3 RX1 BB ADC (IC66) digital interface

Chip pin (IC33)

Chip reference (IC33)

Schematic signal name

FPGA pin

I/O standard

41

DA0_P/DA1

LMS2_BB_ADC2_DA0_P

E25

2.5V

40

DA0_M/DA0

LMS2_BB_ADC2_DA0_N

D25

2.5V

43

DA2_P/DA3

LMS2_BB_ADC2_DA1_P

K16

2.5V

42

DA2_M/DA2

LMS2_BB_ADC2_DA1_N

K17

2.5V

45

DA4_P/DA5

LMS2_BB_ADC2_DA2_P

F23

2.5V

44

DA4_M/DA4

LMS2_BB_ADC2_DA2_N

E23

2.5V

47

DA6_P/DA7

LMS2_BB_ADC2_DA3_P

J19

2.5V

46

DA6_M/DA6

LMS2_BB_ADC2_DA3_N

H19

2.5V

51

DA8_P/DA13

LMS2_BB_ADC2_DA4_P

G24

2.5V

50

DA8_M/DA12

LMS2_BB_ADC2_DA4_N

F24

2.5V

53

DA10_P/DA9

LMS2_BB_ADC2_DA5_P

E26

2.5V

52

DA10_M/DA8

LMS2_BB_ADC2_DA5_N

D26

2.5V

55

DA12_P/DA11

LMS2_BB_ADC2_DA6_P

G25

2.5V

54

DA12_M/DA10

LMS2_BB_ADC2_DA6_N

F25

2.5V

61

DB0_P/DB1

LMS2_BB_ADC2_DB0_P

H26

2.5V

60

DB0_M/DB0

LMS2_BB_ADC2_DB0_N

G26

2.5V

63

DB2_P/DB3

LMS2_BB_ADC2_DB1_P

J25

2.5V

62

DB2_M/DB2

LMS2_BB_ADC2_DB1_N

J26

2.5V

3

DB4_P/DB5

LMS2_BB_ADC2_DB2_P

J24

2.5V

2

DB4_M/DB4

LMS2_BB_ADC2_DB2_N

H24

2.5V

5

DB6_P/DB7

LMS2_BB_ADC2_DB3_P

J18

2.5V

4

DB6_M/DB6

LMS2_BB_ADC2_DB3_N

H18

2.5V

7

DB8_P/DB13

LMS2_BB_ADC2_DB4_P

K20

2.5V

6

DB8_M/DB12

LMS2_BB_ADC2_DB4_N

J20

2.5V

9

DB10_P/DB9

LMS2_BB_ADC2_DB5_P

G22

2.5V

8

DB10_M/DB8

LMS2_BB_ADC2_DB5_N

F22

2.5V

11

DB12_P/DB11

LMS2_BB_ADC2_DB6_P

L17

2.5V

10

DB12_M/DB10

LMS2_BB_ADC2_DB6_N

L18

2.5V

35

CTRL1

LMS2_BB_ADC2_CTRL1

36

CTRL2

LMS2_BB_ADC2_CTRL2

34

CTRL3

LMS2_BB_ADC2_CTRL3

29

INP_A

LMS2_BB_ADC2_INA_P

30

INM_A

LMS2_BB_ADC2_INA_N

23

VCM

LMS2_BB_ADC2_VCM

57

CLKOUTP/CLKOUT

LMS2_BB_ADC2_CLKOUT_P

K21

2.5V

56

CLKOUTM/UNUSED

LMS2_BB_ADC2_CLKOUT_N

J21

2.5V

19

INP_B

LMS2_BB_ADC2_INB_P

20

INM_B

LMS2_BB_ADC2_INB_N

25

CLKP

LMS2_BB_ADC2_CLKC_P

26

CLKM

LMS2_BB_ADC2_CLKC_N

13

SCLK

FPGA_SPI1_SCLK

M16

2.5V

14

SDATA

FPGA_SPI1_MOSI

M14

2.5V

64

SDOUT

FPGA_SPI1_MISO_BB_ADC_LS

E22

2.5V

15

SEN

FPGA_SPI1_LMS2_BB_ADC2_SS

K22

2.5V

12

RESET

FPGA_LMS2_BB_ADC2_RESET

K23

2.5V

Table 8. 14-bit LMS3 RX2 BB ADC (IC68) digital interface

Chip pin (IC33)

Chip reference (IC33)

Schematic signal name

FPGA pin

I/O standard

41

DA0_P/DA1

LMS3_BB_ADC1_DA0_P

AD25

2.5V

40

DA0_M/DA0

LMS3_BB_ADC1_DA0_N

AD26

2.5V

43

DA2_P/DA3

LMS3_BB_ADC1_DA1_P

AC22

2.5V

42

DA2_M/DA2

LMS3_BB_ADC1_DA1_N

AC23

2.5V

45

DA4_P/DA5

LMS3_BB_ADC1_DA2_P

AE25

2.5V

44

DA4_M/DA4

LMS3_BB_ADC1_DA2_N

AE26

2.5V

47

DA6_P/DA7

LMS3_BB_ADC1_DA3_P

AF24

2.5V

46

DA6_M/DA6

LMS3_BB_ADC1_DA3_N

AF25

2.5V

51

DA8_P/DA13

LMS3_BB_ADC1_DA4_P

AF19

2.5V

50

DA8_M/DA12

LMS3_BB_ADC1_DA4_N

AF20

2.5V

53

DA10_P/DA9

LMS3_BB_ADC1_DA5_P

AE18

2.5V

52

DA10_M/DA8

LMS3_BB_ADC1_DA5_N

AF18

2.5V

55

DA12_P/DA11

LMS3_BB_ADC1_DA6_P

AE17

2.5V

54

DA12_M/DA10

LMS3_BB_ADC1_DA6_N

AF17

2.5V

61

DB0_P/DB1

LMS3_BB_ADC1_DB0_P

AC17

2.5V

60

DB0_M/DB0

LMS3_BB_ADC1_DB0_N

AD17

2.5V

63

DB2_P/DB3

LMS3_BB_ADC1_DB1_P

Y16

2.5V

62

DB2_M/DB2

LMS3_BB_ADC1_DB1_N

Y17

2.5V

3

DB4_P/DB5

LMS3_BB_ADC1_DB2_P

Y18

2.5V

2

DB4_M/DB4

LMS3_BB_ADC1_DB2_N

AA18

2.5V

5

DB6_P/DB7

LMS3_BB_ADC1_DB3_P

AD20

2.5V

4

DB6_M/DB6

LMS3_BB_ADC1_DB3_N

AE20

2.5V

7

DB8_P/DB13

LMS3_BB_ADC1_DB4_P

AD21

2.5V

6

DB8_M/DB12

LMS3_BB_ADC1_DB4_N

AE21

2.5V

9

DB10_P/DB9

LMS3_BB_ADC1_DB5_P

AE22

2.5V

8

DB10_M/DB8

LMS3_BB_ADC1_DB5_N

AF22

2.5V

11

DB12_P/DB11

LMS3_BB_ADC1_DB6_P

AE23

2.5V

10

DB12_M/DB10

LMS3_BB_ADC1_DB6_N

AF23

2.5V

35

CTRL1

LMS3_BB_ADC1_CTRL1

36

CTRL2

LMS3_BB_ADC1_CTRL2

34

CTRL3

LMS3_BB_ADC1_CTRL3

29

INP_A

LMS3_BB_ADC1_INA_P

30

INM_A

LMS3_BB_ADC1_INA_N

23

VCM

LMS3_BB_ADC1_VCM

57

CLKOUTP/CLKOUT

LMS3_BB_ADC1_CLKOUT_P

AA20

2.5V

56

CLKOUTM/UNUSED

LMS3_BB_ADC1_CLKOUT_N

AB20

2.5V

19

INP_B

LMS3_BB_ADC1_INB_P

20

INM_B

LMS3_BB_ADC1_INB_N

25

CLKP

LMS3_BB_ADC1_CLKC_P

26

CLKM

LMS3_BB_ADC1_CLKC_N

13

SCLK

FPGA_SPI1_SCLK

M16

2.5V

14

SDATA

FPGA_SPI1_MOSI

M14

2.5V

64

SDOUT

FPGA_SPI1_MISO_BB_ADC_LS

E22

2.5V

15

SEN

FPGA_SPI1_LMS3_BB_ADC1_SS

F20

2.5V

12

RESET

FPGA_LMS3_BB_ADC1_RESET

D24

2.5V

Table 9. 14-bit LMS3 RX2 BB ADC (IC68) digital interface

Chip pin (IC33)

Chip reference (IC33)

Schematic signal name

FPGA pin

I/O standard

41

DA0_P/DA1

LMS3_BB_ADC2_DA0_P

T14

2.5V

40

DA0_M/DA0

LMS3_BB_ADC2_DA0_N

T15

2.5V

43

DA2_P/DA3

LMS3_BB_ADC2_DA1_P

T17

2.5V

42

DA2_M/DA2

LMS3_BB_ADC2_DA1_N

T18

2.5V

45

DA4_P/DA5

LMS3_BB_ADC2_DA2_P

V23

2.5V

44

DA4_M/DA4

LMS3_BB_ADC2_DA2_N

W23

2.5V

47

DA6_P/DA7

LMS3_BB_ADC2_DA3_P

T19

2.5V

46

DA6_M/DA6

LMS3_BB_ADC2_DA3_N

U19

2.5V

51

DA8_P/DA13

LMS3_BB_ADC2_DA4_P

AA22

2.5V

50

DA8_M/DA12

LMS3_BB_ADC2_DA4_N

AA23

2.5V

53

DA10_P/DA9

LMS3_BB_ADC2_DA5_P

U25

2.5V

52

DA10_M/DA8

LMS3_BB_ADC2_DA5_N

U26

2.5V

55

DA12_P/DA11

LMS3_BB_ADC2_DA6_P

V26

2.5V

54

DA12_M/DA10

LMS3_BB_ADC2_DA6_N

W26

2.5V

61

DB0_P/DB1

LMS3_BB_ADC2_DB0_P

AB26

2.5V

60

DB0_M/DB0

LMS3_BB_ADC2_DB0_N

AC26

2.5V

63

DB2_P/DB3

LMS3_BB_ADC2_DB1_P

AA24

2.5V

62

DB2_M/DB2

LMS3_BB_ADC2_DB1_N

AB25

2.5V

3

DB4_P/DB5

LMS3_BB_ADC2_DB2_P

W20

2.5V

2

DB4_M/DB4

LMS3_BB_ADC2_DB2_N

Y20

2.5V

5

DB6_P/DB7

LMS3_BB_ADC2_DB3_P

AB24

2.5V

4

DB6_M/DB6

LMS3_BB_ADC2_DB3_N

AC24

2.5V

7

DB8_P/DB13

LMS3_BB_ADC2_DB4_P

V19

2.5V

6

DB8_M/DB12

LMS3_BB_ADC2_DB4_N

W19

2.5V

9

DB10_P/DB9

LMS3_BB_ADC2_DB5_P

Y25

2.5V

8

DB10_M/DB8

LMS3_BB_ADC2_DB5_N

AA25

2.5V

11

DB12_P/DB11

LMS3_BB_ADC2_DB6_P

W25

2.5V

10

DB12_M/DB10

LMS3_BB_ADC2_DB6_N

Y26

2.5V

35

CTRL1

LMS3_BB_ADC2_CTRL1

36

CTRL2

LMS3_BB_ADC2_CTRL2

34

CTRL3

LMS3_BB_ADC2_CTRL3

29

INP_A

LMS3_BB_ADC2_INA_P

30

INM_A

LMS3_BB_ADC2_INA_N

23

VCM

LMS3_BB_ADC2_VCM

57

CLKOUTP/CLKOUT

LMS3_BB_ADC2_CLKOUT_P

U22

2.5V

56

CLKOUTM/UNUSED

LMS3_BB_ADC2_CLKOUT_N

V22

2.5V

19

INP_B

LMS3_BB_ADC2_INB_P

20

INM_B

LMS3_BB_ADC2_INB_N

25

CLKP

LMS3_BB_ADC2_CLKC_P

26

CLKM

LMS3_BB_ADC2_CLKC_N

13

SCLK

FPGA_SPI1_SCLK

M16

2.5V

14

SDATA

FPGA_SPI1_MOSI

M14

2.5V

64

SDOUT

FPGA_SPI1_MISO_BB_ADC_LS

E22

2.5V

15

SEN

FPGA_SPI1_LMS3_BB_ADC2_SS

E20

2.5V

12

RESET

FPGA_LMS3_BB_ADC2_RESET

D20

2.5V

Baseband DACs

There are two Dual-Channel 16-Bit, 250Msps, digital-to-analog converters (MAX5878 – IC60, and IC61). DAC analog outputs are connected to baseband TX inputs of RF transceivers #2 (IC20). Digital input pins are connected to FPGA.

Detailed interface between DACs and other components including DAC pins, schematic signal names, FPGA pins and FPGA I/O standards is as shown in Table 10 and Table 11.

Table 10. 16-bit LMS2 TX1 BB DAC (IC60) digital interface

Chip pin (IC33)

Chip reference (IC33)

Schematic signal name

FPGA pin

I/O standard

9

B0N

LMS2_BB_DAC1_B0_N

M1

2.5V

8

B0P

LMS2_BB_DAC1_B0_P

N1

2.5V

7

B1N

LMS2_BB_DAC1_B1_N

R6

2.5V

6

B1P

LMS2_BB_DAC1_B1_P

R7

2.5V

5

B2N

LMS2_BB_DAC1_B2_N

L7

2.5V

4

B2P

LMS2_BB_DAC1_B2_P

M7

2.5V

3

B3N

LMS2_BB_DAC1_B3_N

T7

2.5V

2

B3P

LMS2_BB_DAC1_B3_P

T8

2.5V

1

B4N

LMS2_BB_DAC1_B4_N

P8

2.5V

68

B4P

LMS2_BB_DAC1_B4_P

R8

2.5V

67

B5N

LMS2_BB_DAC1_B5_N

U5

2.5V

66

B5P

LMS2_BB_DAC1_B5_P

U6

2.5V

65

B6N

LMS2_BB_DAC1_B6_N

P5

2.5V

64

B6P

LMS2_BB_DAC1_B6_P

P6

2.5V

63

B7N

LMS2_BB_DAC1_B7_N

R5

2.5V

62

B7P

LMS2_BB_DAC1_B7_P

T5

2.5V

60

B8N

LMS2_BB_DAC1_B8_N

U1

2.5V

59

B8P

LMS2_BB_DAC1_B8_P

U2

2.5V

58

B9N

LMS2_BB_DAC1_B9_N

R2

2.5V

57

B9P

LMS2_BB_DAC1_B9_P

T2

2.5V

56

B10N

LMS2_BB_DAC1_B10_N

P1

2.5V

55

B10P

LMS2_BB_DAC1_B10_P

R1

2.5V

54

B11N

LMS2_BB_DAC1_B11_N

T3

2.5V

53

B11P

LMS2_BB_DAC1_B11_P

T4

2.5V

52

B12N

LMS2_BB_DAC1_B12_N

L4

2.5V

51

B12P

LMS2_BB_DAC1_B12_P

M4

2.5V

50

B13N

LMS2_BB_DAC1_B13_N

J3

2.5V

49

B13P

LMS2_BB_DAC1_B13_P

K3

2.5V

48

B14N

LMS2_BB_DAC1_B14_N

J1

2.5V

47

B14P

LMS2_BB_DAC1_B14_P

K1

2.5V

46

B15N

LMS2_BB_DAC1_B15_N

H1

2.5V

45

B15P

LMS2_BB_DAC1_B15_P

H2

2.5V

37

CLKN

LMS2_BB_DAC1_CLK_N

L2

2.5V

38

CLKP

LMS2_BB_DAC1_CLK_P

M2

2.5V

43

SELIQP

LMS2_BB_DAC1_SELIQ_P

M6

2.5V

44

SELIQN

LMS2_BB_DAC1_SELIQ_N

M5

2.5V

40

PD

LMS2_BB_DAC1_PD

M26

3.3V

Table 11. 16-bit LMS2 TX1 BB DAC (IC61) digital interface

Chip pin (IC33)

Chip reference (IC33)

Schematic signal name

FPGA pin

I/O standard

9

B0N

LMS2_BB_DAC2_B0_N

D6

2.5V

8

B0P

LMS2_BB_DAC2_B0_P

E6

2.5V

7

B1N

LMS2_BB_DAC2_B1_N

G7

2.5V

6

B1P

LMS2_BB_DAC2_B1_P

H7

2.5V

5

B2N

LMS2_BB_DAC2_B2_N

E3

2.5V

4

B2P

LMS2_BB_DAC2_B2_P

F3

2.5V

3

B3N

LMS2_BB_DAC2_B3_N

K6

2.5V

2

B3P

LMS2_BB_DAC2_B3_P

K7

2.5V

1

B4N

LMS2_BB_DAC2_B4_N

H4

2.5V

68

B4P

LMS2_BB_DAC2_B4_P

J4

2.5V

67

B5N

LMS2_BB_DAC2_B5_N

E2

2.5V

66

B5P

LMS2_BB_DAC2_B5_P

F2

2.5V

65

B6N

LMS2_BB_DAC2_B6_N

D1

2.5V

64

B6P

LMS2_BB_DAC2_B6_P

E1

2.5V

63

B7N

LMS2_BB_DAC2_B7_N

B1

2.5V

62

B7P

LMS2_BB_DAC2_B7_P

C1

2.5V

60

B8N

LMS2_BB_DAC2_B8_N

C3

2.5V

59

B8P

LMS2_BB_DAC2_B8_P

D3

2.5V

58

B9N

LMS2_BB_DAC2_B9_N

A4

2.5V

57

B9P

LMS2_BB_DAC2_B9_P

B4

2.5V

56

B10N

LMS2_BB_DAC2_B10_N

A2

2.5V

55

B10P

LMS2_BB_DAC2_B10_P

A3

2.5V

54

B11N

LMS2_BB_DAC2_B11_N

A5

2.5V

53

B11P

LMS2_BB_DAC2_B11_P

B5

2.5V

52

B12N

LMS2_BB_DAC2_B12_N

G6

2.5V

51

B12P

LMS2_BB_DAC2_B12_P

H6

2.5V

50

B13N

LMS2_BB_DAC2_B13_N

F7

2.5V

49

B13P

LMS2_BB_DAC2_B13_P

F8

2.5V

48

B14N

LMS2_BB_DAC2_B14_N

G9

2.5V

47

B14P

LMS2_BB_DAC2_B14_P

H9

2.5V

46

B15N

LMS2_BB_DAC2_B15_N

G8

2.5V

45

B15P

LMS2_BB_DAC2_B15_P

H8

2.5V

37

CLKN

LMS2_BB_DAC2_CLK_N

D5

2.5V

38

CLKP

LMS2_BB_DAC2_CLK_P

E5

2.5V

43

SELIQP

LMS2_BB_DAC2_SELIQ_P

L8

2.5V

44

SELIQN

LMS2_BB_DAC2_SELIQ_N

K8

2.5V

40

PD

LMS2_BB_DAC2_PD

N24

3.3V

GNSS module

GNSS module LYNQ N20B (IC58) can be used not only for positioning applications but for frequency measuring and tuning applications also (e. g. GPS disciplined oscillator - GPSDO). It provides 1PPS time synchronization pulse which is connected to FPGA for further processing. Connection to FPGA is as shown in Table 12.

Table 12. GNSS module (IC58) connection

Chip pin (IC14)

Chip reference (IC14)

Schematic signal name

FPGA pin

I/O standard

3

TIMEPULSE

GNSS_TPULSE

L20

3.3V

20

UART_TX

GNSS_UART_TX

L24

3.3V

21

UART_RX

GNSS_UART_RX

L25

3.3V

External GNSS antenna SMA connector (J21) supports active antennas (3.3V).

PMOD connectors

Two ten pin 0.1” pitch right angle PMOD connectors (J15, J19) are connected to the FPGA. Pinout description, dedicated FPGA pins and FPGA I/O standard is shown in Table 13 and Table 14.

Table 13. PMOD #A connection (J15)

Connector pin

Schematic signal name

FPGA pin

I/O standard

Comment

1

PMOD_A_PIN1

R25

3.3V

2

PMOD_A_PIN2

P23

3.3V

3

PMOD_A_PIN3

P21

3.3V

4

PMOD_A_PIN4

P19

3.3V

7

PMOD_A_PIN7

R20

3.3V

8

PMOD_A_PIN8

R21

3.3V

9

PMOD_A_PIN9

P15

3.3V

10

PMOD_A_PIN10

P16

3.3V

5,11

GND

6,12

VCC

3.3V (default) or 5V selectable power rail.

Table 14. PMOD #B connection (J19)

Connector pin

Schematic signal name

FPGA pin

I/O standard

Comment

1

PMOD_B_PIN1

L23

3.3V

2

PMOD_B_PIN2

M24

3.3V

3

PMOD_B_PIN3

M22

3.3V

4

PMOD_B_PIN4

N22

3.3V

7

PMOD_B_PIN7

N19

3.3V

8

PMOD_B_PIN8

P24

3.3V

9

PMOD_B_PIN9

P25

3.3V

10

PMOD_B_PIN10

N23

3.3V

5,11

GND

6,12

VCC

3.3V (default) or 5V selectable power rail.

Pins 6 and 12 of each PMOD connector provides output voltage of 3.3V (default) or 5V. To provide 5V instead of 3.3V remove R181 and solder R182 resistor for PMOD#A; remove R203 and solder R204 resistor for PMOD#B as shown in Figure 5.

../_images/PCIe_5GRadio_v3.0_PMODA.png
../_images/PCIe_5GRadio_v3.0_PMODB.png

Figure 5. PMOD connectors

Indication LEDs

LimeSDR X3 board features six dual color (red and green (RG)) indication LEDs. Most of LEDs are connected to FPGA and their function may be programmed according to the user requirements. Default function of LEDs and related information is listed in Table 15.

Table 15. Default LED functions

Board Reference

Schematic name

Board label

FPGA pin

Description

LED1

FPGA_LED1_R

LED1

U17

FPGA_LED1_G

T20

LED2

FPGA_LED2_R

LED2

V17

FPGA_LED2_G

U16

LED3

FPGA_LED3_R

LED3

V16

FPGA_LED3_G

U15

LED4

FPGA_LED4_R

LED4

V14

FPGA_LED4_G

U14

LED5

LED5 VCC3P3

Green LED indicates VCC3P3 power rail presence. Red LED is unused.

LED6

FPGA_DONE

LED6 FPGA_DONE LED

W10

Green LED indicates board ready to use. Red LED indicates FPGA

initialization failure.

DIP Switches

Four bit DIP switch SW1 is connected to FPGA and may be used to implement additional functionality which requires input control. Each switch line has external pull up resistor. When switch is in position “On”, it pulls the line down to logic ‘0’ level.

../_images/PCIe_5GRadio_v3.0_DIPSW.png

Figure 6. LimeSDR X3 four poles slide switch

Switch and FPGA interconnection is as shown in Table 16.

Table 16. FPGA Switch connections

Switch pole

Schematic signal name

FPGA pin

(IC29)

I/O standard

1

FPGA_SW0

K5

2.5V

2

FPGA_SW1

L5

2.5V

3

FPGA_SW2

G1

2.5V

4

FPGA_SW3

G2

2.5V

Temperature sensor and fan control

LimeSDR X3 board has integrated temperature sensor which can be used to monitor board temperature through I2C interface.

Sensor has over temperature shutdown (OS) output connected to FPGA which can be used to take actions to reduce board temperature when it rises above set limits. For example, fan will be turned on if board will heat up to 45°C and FAN will be turned off if board will cool down to 35°C as shown in Figure 7. These values can be modified.

../_images/PCIe_5GRadio_v3.0_FanHysteresis.png

Figure 7. FAN control temperature hysteresis

Table 17. Temperature sensor and fan pin connection

Schematic signal name

FPGA pin

I/O standard

Comment

FPGA_I2C_SCL

N16

3.3V

Serial Clock

FPGA_I2C_SDA

N17

3.3V

Data

LM75_OS

U24

2.5V

Overtemperature shutdown output (FPGA input)

FAN_CTRL

U4

2.5V

Fan control output

Fan voltage can be selected between 3.3V, 5V (default) and 12V via R186, R187 and R188 respectively as shown in Figure 8. Up to three fans can be connected to connectors: J18 (FPGA), J16 (RF) and J17 (spare).

../_images/PCIe_5GRadio_v3.0_FanControl.png

Figure 8. Fan control circuit and voltage selection resistors

Clock Distribution

LimeSDR X3 board has onboard VCOCXO U7475LF (XO3 – 30.72 MHz) (default), VCTCXO E6245LF, E5280LF (XO4, XO5 - 30.7 MHz), ASVTX-12-A-38.400MHZ-H10-T (XO7 – 38.4 MHz) and RTX5032A (XO6 – 40 MHz) oscillators that can be used as source for clock buffer LMK00101 and clock generator CDCM6208. By default XO3 is connected to the clock buffer primary reference input. All these XOs can be tuned by 16-bit DAC (IC77), phase detector (IC76) or by FPGA using GPIO in PWM mode.

Using header J30 connector is possible to connect external reference clock and PPS signal from another board. Header J31 can be used to feed reference clock and PPS signal to another board. Headers J30 and J31 can be used to synchronize several boards by daisy chaining each other.

Using J27 coaxial connector it is possible to feed external reference clock.

For Frequency and phase synchronization over network implementation (Precision Time Protocol (White Rabbit)) there is some dedicated hardware on the board: 25 MHz VCTXCO (XO1) and 20 MHz VCXO (XO2), clock generator CDCM61004 (IC71), 16 bit XO DACs (IC70, IC73) and SFP cage (J24).

There is 100 MHz crystal oscillator (XO4) connected to FPGA.

Clock distribution block diagram is as shown in Figure 9.

../_images/PCIe_5GRadio_3v0_diagrams_r1_clock.png

Figure 9. LimeSDR X3 board clock distribution block diagram

Table 18. LimeSDR X3 clock pins

Source

Schematic signal name

I/O standard

FPGA pin

Description

Clock buffer (LMK1 –IC74)

LMK1_CLK1

2.5V

W21

LMK1_CLK2

2.5V

R3

LMK2_CLKIN0

2.5V

Connected to LMK2

ADF_RF_IN

2.5V

Connected to ADF4002

CDCM_PRI_REF

2.5V

Connected to CDCM6208

LMK1_CLKOUT

3.3V

Connected to J28

EXT_CLK_OUT

3.3V

Connected to J31

Clock buffer (LMK2 –IC78)

LMS1_TxPLL_CLK

1.8V

Connected to LMS1

LMS1_RxPLL_CLK

1.8V

Connected to LMS1

LMS2_TxPLL_CLK

1.8V

Connected to LMS2

LMS2_RxPLL_CLK

1.8V

Connected to LMS2

LMS3_TxPLL_CLK

1.8V

Connected to LMS3

LMS3_RxPLL_CLK

1.8V

Connected to LMS3

RF transceiver #1 (IC1)

LMS1_MCLK1

2.5V/3.3V

AA3

LMS1_FCLK1

2.5V/3.3V

AB2

LMS1_MCLK2

2.5V/3.3V

AA4

LMS1_FCLK2

2.5V/3.3V

AC3

GNSS module IC14

GNSS_TPULSE

3.3V

L20

1PPS time pulse output

Power Distribution

LimeSDR X3 board by default must be powered from 12V 6 pin PCIe power connector (J36) due to high power consumption. An alternative 12V supply connection is possible from the PCI connector (disabled by default) if a power consumption of less than 25W is guaranteed.

Header J34 (0.2” pitch) and J35 (0.1” pitch) can be used for powering external 12V devices.

LimeSDR X3 board power distribution diagram is as shown in Figure 10.

../_images/PCIe_5GRadio_3v0_diagrams_r1_power.png

Figure 10. LimeSDR X3 board power distribution diagram